Κωνσταντίνος Θ. Δέρβος
Καθηγητής Ε.Μ.Π.

Φωτοβολταϊκά Συστήματα: από τη Θεωρία στην Πράξη
Πίνακας Περιεχομένων

ΜΕΡΟΣ Ι: ΘΕΩΡΙΑ ΤΩΝ ΗΜΙΑΓΩΓΩΝ

ΚΕΦΑΛΑΙΟ 1
ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΗΜΙΑΓΩΓΟΥΣ

Ο σχηματισμός των ενεργειακών ζώνων
Ο αριθμός των φορέων μέσα σε μία ζώνη
Αμιγείς ημιαγωγοί
Ημιαγωγοί προσμείξεων

ΚΕΦΑΛΑΙΟ 2
ΜΕΤΑΦΟΡΑ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΕΩΝ

Η κίνηση των ηλεκτρικών φορέων εντός της ενεργειακής ζώνης
(i) Διακοπή του επιβαλλόμενου ηλεκτρικού πεδίου
(ii) Μόνιμη κατάσταση για την ολίσθηση ηλεκτρόνιων - οπών

ΚΕΦΑΛΑΙΟ 3
Η ΣΥΓΚΕΝΤΡΩΣΗ ΤΩΝ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΕΩΝ ΟΤΑΝ ΔΕΝ ΙΣΧΥΕΙ Η ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΙΣΟΡΡΟΠΙΑ

Η κατάσταση της δυναμικής ισορροπίας
Επανασύνδεση φορέων από τη ζώνη αγωγιμότητα στη ζώνη σθένους
Επανασύνδεση φορέων με τη βοήθεια των ενεργειακών σταθμών που βρίσκονται στο μέσο του ενεργειακού διακένου
Επανασύνδεση φορέων με μη ακτινοβολούσες διεργασίες. (Επανασύνδεση τύπου Auger)

ΚΕΦΑΛΑΙΟ 4
ΓΕΝΙΚΗ ΠΕΡΙΠΤΩΣΗ. ΣΥΝΔΥΑΣΜΟΣ ΔΙΑΧΥΣΗΣ ΚΑΙ ΗΛΕΚΤΡΙΚΟΥ ΠΕΔΙΟΥ

Ρεύμα διάχυσης
Ρεύμα ολίσθησης
Το συνολικό ρεύμα
Οι πλήρεις εξισώσεις για την περιγραφή των επιπρόσθετων φορέων μειονότητας Δη ή Δρ που οφείλονται σε έγχυση
Εφαρμογή
<table>
<thead>
<tr>
<th>ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Διόδοι Schottky</td>
<td>102</td>
</tr>
<tr>
<td>Σύγκριση φωτοβολταϊκών διατάξεων p-n και Schottky</td>
<td>104</td>
</tr>
<tr>
<td>Το ηλεκτροστατικό φράγμα δυναμικού στην περιοχή της επαφής p-n</td>
<td>105</td>
</tr>
<tr>
<td>Ημετερότητας τύπου n</td>
<td>105</td>
</tr>
<tr>
<td>Ημετερότητας τύπου p</td>
<td>107</td>
</tr>
<tr>
<td>Ηλεκτρικά φορτιά που δεν ανεφεύγουν άμεσα στην αγωγιμότητα</td>
<td>108</td>
</tr>
<tr>
<td>Η περιοχή του ηλεκτροστατικού φράγματος δυναμικού</td>
<td>109</td>
</tr>
<tr>
<td>Το ενεργειακό διάκενο, E_g</td>
<td>111</td>
</tr>
<tr>
<td>Θερμοδυναμική ισορροπία</td>
<td>111</td>
</tr>
<tr>
<td>Το φωτοβολταϊκό φαινόμενο</td>
<td>112</td>
</tr>
<tr>
<td>Η ενεργός περιοχή</td>
<td>112</td>
</tr>
<tr>
<td>Η απτική διέγερση της διόδου</td>
<td>112</td>
</tr>
<tr>
<td>Τάση ανακτοκύκλωσης και φωτόρειμα</td>
<td>115</td>
</tr>
<tr>
<td>Οι εξάσκοσες $I - V$ του ΦΒ στοιχείου</td>
<td>116</td>
</tr>
<tr>
<td>Η διόδος ως ανηχευτής ακτινοβολίας</td>
<td>118</td>
</tr>
<tr>
<td>Η διόδος ως φωτοβολταϊκό στοιχείο</td>
<td>119</td>
</tr>
<tr>
<td>Το ισοδύναμο κύκλωμα μιας φωτιζόμενης διόδου p-n</td>
<td>119</td>
</tr>
<tr>
<td>Διάταξη ανηχευτής ακτινοβολίας υψηλής απόδοσης</td>
<td>120</td>
</tr>
<tr>
<td>Το υλικό</td>
<td>121</td>
</tr>
<tr>
<td>Η δομή της διάταξης</td>
<td>122</td>
</tr>
<tr>
<td>Η λειτουργία της διάταξης</td>
<td>122</td>
</tr>
<tr>
<td>Η χαρακτηριστική $I - V$ ενός φωτοβολταϊκού στοιχείου</td>
<td>123</td>
</tr>
<tr>
<td>Ρεύμα βραχυκύκλωσης (I_{sc})</td>
<td>124</td>
</tr>
<tr>
<td>Τάση ανακτοκύκλωσης (V_{oc})</td>
<td>125</td>
</tr>
<tr>
<td>Μέγιστη παραφερμένη ισχύς (P_{max})</td>
<td>125</td>
</tr>
<tr>
<td>Η ανάλυση των παραμέτρων του ισοδύναμου ηλεκτροκίνητου κυκλώματος ενός φωτοβολταϊκού στοιχείου</td>
<td>127</td>
</tr>
<tr>
<td>Παράγοντες που επηρεάζουν τη στάθμιση της ΦΒ μετατροπής και διαμορφώνουν την κατασκευαστική γεωμετρία ενός ΦΒ στοιχείου</td>
<td>139</td>
</tr>
<tr>
<td>Το φωτοβολταϊκό στοιχείο, το πλαίσιο, η συστοιχία και το πεδίο</td>
<td>146</td>
</tr>
<tr>
<td>Το φωτοβολταϊκό στοιχείο (cell)</td>
<td>146</td>
</tr>
<tr>
<td>Μονοκρυσταλλικά ΦΒ στοιχεία</td>
<td>146</td>
</tr>
<tr>
<td>Πολυκρυσταλλικά ΦΒ στοιχεία</td>
<td>147</td>
</tr>
<tr>
<td>ΦΒ στοιχεία λεπτών υμενίων</td>
<td>148</td>
</tr>
<tr>
<td>ΦΒ στοιχεία άμορφου πυριτίου (a-Si)</td>
<td>150</td>
</tr>
<tr>
<td>Το φωτοβολταϊκό πλαίσιο (PV module)</td>
<td>151</td>
</tr>
<tr>
<td>Κατασκευαστική και τύπος</td>
<td>154</td>
</tr>
<tr>
<td>Υλικό ΦΒ στοιχείων</td>
<td>154</td>
</tr>
<tr>
<td>Ισχύς STC</td>
<td>154</td>
</tr>
<tr>
<td>Ισχύς PTC</td>
<td>155</td>
</tr>
<tr>
<td>Χαρακτηριστικά παρεχόμενης ισχύος</td>
<td>155</td>
</tr>
<tr>
<td>Οριακές τιμές ρεύματος και τάσης</td>
<td>156</td>
</tr>
<tr>
<td>Θερμοκρασιακή εξάσκηση όρων</td>
<td>156</td>
</tr>
<tr>
<td>Ονομαστική θερμοκρασία πλαίσιον</td>
<td>156</td>
</tr>
<tr>
<td>Ασφάλεια ρεύματος συμπίεσης</td>
<td>157</td>
</tr>
<tr>
<td>Συνδεσμολογία</td>
<td>157</td>
</tr>
<tr>
<td>Λοιπά χαρακτηριστικά</td>
<td>157</td>
</tr>
<tr>
<td>Η παρεχόμενη ισχύς του ΦΒ πλαίσιον (στοιχειοσειρά όμοιων στοιχείων)</td>
<td>157</td>
</tr>
<tr>
<td>Η δημιουργία των θερμικών σημείων</td>
<td>159</td>
</tr>
<tr>
<td>Η προστασία των θερμικών σημείων των πλαίσιων</td>
<td>161</td>
</tr>
<tr>
<td>Η σειριακή σύνδεση των φωτοβολταϊκών πλαίσιων (string)</td>
<td>164</td>
</tr>
<tr>
<td>Το φωτοβολταϊκό υποπεδίο / πεδίο (sub-array/array)</td>
<td>166</td>
</tr>
</tbody>
</table>
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

Η παρεχόμενη ισχύς από N άμους ΦΒ συστοιχίες σε παράλληλη συνδέσμολογία........ 168
Η παρεχόμενη ισχύς από δύο ανόμους ΦΒ συστοιχίες σε παράλληλη σύνδεση........ 170
Μελέτη πιθανών φαλαμάτων ενός συστήματος παράλληλου ΦΒ συστοιχίων........ 173
Παράδειγμα απόλυσης μόνος είδους............................. 174
Τρόποι αντιμετώπισης ... 175
Θέματα ασφαλείας που πρέπει να λαμβάνονται υπόψη κατά την εγκατάσταση των ΦΒ συστημάτων........ 176
Λουπές παρατηρήσεις ... 178
Οι κυρίωτεροι παράγοντες που επιδρούν στην απόδοση των πλαισίων στις ΦΒ εγκαταστάσεις........ 179
Αρχική βαθμονόμηση STC... 179
Ο θερμοκρασιακός παράγοντας.................................. 179
Ρύπανση συμπτιματικής προέλευσης............................. 180
Ηλεκτρικές απώλειες... 180
Σταθερή γωνία τοποθέτησης των ΦΒ πλαισίων...................... 181
Οι απώλειες της μετατροπής από DC σε AC......................... 183
Οι απώλεις της μετατροπής από DC σε AC......................... 183
Ανηγμένες ώρες ηλιακής ακτινοβολίας (sun hours): Παραγόμενη ενέργεια ετησίως........ 184
ΠΙΝΑΚΑΣ 1: Τεχνικά χαρακτηριστικά εμπορικών φωτοβολταϊκών πλαισίων........ 187

ΒΙΒΛΙΟΓΡΑΦΙΑ.. 203

ΜΕΡΟΣ IV: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ: Η ΠΗΓΗ................................. 205

ΚΕΦΑΛΑΙΟ 8

ΦΩΣ ΚΑΙ ΗΛΙΑΚΗ ΓΕΩΜΕΤΡΙΑ...................................... 207
Τι είναι το φως; ... 207
Φάσμα και Χρόνια... 208
Ακτινοβολία μέλανος σώματος..................................... 208
Απορρόφηση, σκέδαση και ανάκλαση του φωτός.................. 210
Γεωμετρία Ήλιου - Γης.. 212
Η θέση του Ήλιου ως προς ένα σημείο πάνω στη Γη................ 216
Ο καθορισμός μιας τοποθέτησης πάνω στη Γη..................... 216
Το Οριζόντιο Σύστημα... 218
Η ηλιακή Άρα... 219
Η θέση του Ήλιου.. 222
Ηλιακή απόκλιση, δ ... 222
Η οφραία γωνία, θ ... 222
Εξάκτων παράδειγμα.. 224
Ο προσδιορισμός της θέσης του Ήλιου.............................. 224
Υπολογισμός του ύψους του Ήλιου, β, και αξιοποίησης γωνίας, Z......................... 226
Γωνίες που συνάντουν τη θέση του Ήλιου με το έδαφος και τον ηλιακό συλλέκτη........ 226
Η διάρκεια της ημέρας... 228
Χειροτεχνία παράλληλης σειρέως ηλιακών συλλεκτών.................. 228
Ηλιακοί χρηματάρες.. 229
Η ηλιακή ακτινοβολία... 230
Ο Ήλιος και η ακτινοβολία του................................. 230
Η ακτινοβολία εκτός της γήινης ατμόσφαιρας...................... 232
Η ενέργεια που φθάνει στην επιφάνεια της Γης...................... 235
Η επίδραση της ατμόσφαιρας .. 236

Εποχική διαφοροποίηση της φασματικής ακτινοβολίας ... 240

Οι συνιστώσες της ηλιακής ακτινοβολίας ... 241

Η παγκόσμια κατανομή της ηλιακής ακτινοβολίας ... 243

Μέτρηση και υπολογισμός της ηλιακής ακτινοβολίας .. 243

Οριζόντια μέτρησης ... 243

Η μέγιστη δυνατή συλλογή ακτινοβολίας από σταθερό συλλέκτη .. 251

Υπολογισμός της μέσης ηλιακής ακτινοβολίας σε συγκεκριμένη τοποθεσία και κλίση συλλέκτη ... 252

Μοντέλα προσδιορισμού της άμεσης και διάχυτης συνιστώσας της ακτινοβολίας 253

Παραμετρικό μοντέλο ASHRAE ... 253

Το μοντέλο κατάτμησης της ακτινοβολίας των Erbs-Klein-Duffie 255

Υπολογισμός της ακτινοβολίας σε ένα κεκλιμένο επίπεδο .. 260

Η γωνία πρόσπτωσης σε κεκλιμένο συλλέκτη .. 262

Δημιουργία χρονοσειρών ... 265

Μέσες τιμές (ημερήσιες - μηνιαίες - ημερήσιες) της ακτινοβολίας στο Διάστημα 266

Μέσες τιμές (ημερήσιες - μηνιαίες - ημερήσιες) της συνολικής ακτινοβολίας, G_{GLOBAL}, στην οριζόντια επιφάνεια της Γης ... 268

Μέσες τιμές (ημερήσιες - μηνιαίες - ημερήσιες) των συνιστώσων G_{DIFF} και G_{BEAM} της ηλιακής ακτινοβολίας, στην οριζόντια επιφάνεια της Γης ... 269

Η ημερήσια μέση τιμή των συνιστωσών της ακτινοβολίας G_{DIFF}, G_{BEAM} σε κεκλιμένο συλλέκτη στην επιφάνεια της Γης ... 270

Ο προσδιορισμός των οριακών μέσων τιμών G_{GLOBAL}, G_{DIFF} της ακτινοβολίας σύμφωνα με τα μοντέλα των Liu και Jordan, και των Collares-Pereira και Rabl 271

Η ανακλώμενη ακτινοβολία από το έδαφος (albedo) ... 274

ΒΙΒΛΙΟΓΡΑΦΙΑ ... 277

ΜΕΡΟΣ V: ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΦΩΤΟΒΟΛΤΑΪΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ .. 279

ΚΕΦΑΛΑΙΟ 9

ΚΑΛΩΔΙΩΣΕΙΣ .. 281

Ο υπολογισμός των καλωδιώσεων των φωτοβολταϊκών εγκαταστάσεων 281

Ο καθορισμός της διατομής των καλωδίων-DC από πίνακες ... 289

ΚΕΦΑΛΑΙΟ 10

ΟΙ ΡΥΘΜΙΣΤΕΣ ΤΑΣΕΩΣ ΦΟΡΤΙΣΗΣ ΣΥΣΣΩΡΕΥΤΩΝ ΤΩΝ ΦΩΤΟΒΟΛΤΑΪΚΩΝ
ΕΓΚΑΤΑΣΤΑΣΕΩΝ (REGULATORS) ... 293

ΚΕΦΑΛΑΙΟ 11

ΑΝΑΣΤΡΟΦΕΙΣ (INVERTERS) ΦΩΤΟΒΟΛΤΑΪΚΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ 303

Οι αναστροφείς των φωτοβολταϊκών συστημάτων ... 303

Γενικά χαρακτηριστικά των αναστροφέων φωτοβολταϊκών συστημάτων 310

Κατηγορίες αναστροφέων .. 315

Α. Αναστροφείς αυτόνομων ΦΒ συστημάτων (stand alone inverters) 315
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

Ιδιαίτερα χαρακτηριστικά των αναστροφέων ΑΦΣ ... 317
Παραδείγματα εγκαταστάσεων ΑΦΣ ... 318
ΠΑΡΑΔΕΙΓΜΑ 1: ΑΦΣ με καταναλώσεις DC και AC ... 318
ΠΑΡΑΔΕΙΓΜΑ 2: Τηλεοπτικό ΑΦΣ ... 321
Β. Αναστροφείς διασυνδεδεμένοι με το τοπικό δίκτυο (grid tied inverters) .. 325
Παραδείγματα ΦΒ εγκαταστάσεων διασυνδεδεμένων με το τοπικό δίκτυο .. 326
Γ. Αναστροφείς δικτύου που υποστηρίζονται από συσσωρευτές (battery back-up inverters) 347
Οι αλγόριθμοι MPPT και ο έλεγχος του σημείου λειτουργίας .. 353
Παράδειγμα: Πλεονεκτήματα εφαρμογής αλγόριθμων MPPT .. 356

ΚΕΦΑΛΑΙΟ 12

ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΣΣΩΡΕΥΤΩΝ .. 359

Εισαγωγή στους συσσωρευτές ηλεκτρικής ενέργειας ... 359

Τα χαρακτηριστικά των συσσωρευτών .. 362
- Το δυναμικό ... 362
- Το ρεύμα .. 365
- Η χωρητικότητα ... 365
- Πυκνότητα αποθήκευσης ηλεκτρικού φορτίου .. 366
- Πυκνότητα ενέργειας ... 367
- Πυκνότητα Ισχύος ... 367
- Ρυθμός εκφόρτισης ... 368
- Κύκλος ζωής .. 368
- Απόδοση ενέργειας ... 368
- Συμπεριφορά κατά την υπερφόρτιση .. 369
- Αποθήκευση .. 369
- Εύρος λειτουργικών συνθηκών .. 369
- Αξιοπιστία (Reliability) ... 369
- Οικονομικοί παράμετροι .. 369
- Προδιαγραφές συσσωρευτών .. 370

Αποτίμηση της λειτουργίας ενός συσσωρευτή .. 373

Τα εξαρτήματα των συσσωρευτών ... 375
- Περιβλήμα (κάλυψης) ... 375
- Διαχωριστικά .. 375
- Ρεματοσυλλέκτες ... 376
- Ηλεκτρολόγηση .. 377
- Ενεργά υλικά .. 377
- Μοντέλο λειτουργίας πορώδους ηλεκτροδίου .. 378
- Εµπορικά συστήματα συσσωρευτών .. 379
- Α. Συσσωρευτές μολύβδου ... 381
- Β. Συσσωρευτές νικελίου-καδμίου .. 381

ΒΙΒΛΙΟΓΡΑΦΙΑ ... 393

ΜΕΡΟΣ VI

ΜΕΘΟΔΟΙ ΥΠΟΛΟΓΙΣΜΟΥ ΤΩΝ ΑΥΤΟΝΟΜΩΝ ΦΩΤΟΒΟΛΑΤΑΪΚΩΝ ΣΥΣΤΗΜΑΤΩΝ .. 395
ΚΕΦΑΛΑΙΟ 13
ΜΕΛΕΤΗ ΑΥΤΟΝΟΜΟΥ ΦΟΤΟΒΟΛΤΑΪΚΟΥ ΣΥΣΤΗΜΑΤΟΣ

ΠΑΡΑΔΕΙΓΜΑ-1: Μελέτη υπολογισμού μικρού αυτόνομου ΦΒ συστήματος397
1. Καθορισμός δεδομένων και κύριων χαρακτηριστικών του ΦΒ συστήματος397
2. Εκτίμηση των ενεργειακών αναγκών που πρέπει να αικανοποιεί το σύστημα398
3. Η περίοδος λειτουργίας του συστήματος και η θέση της είσοδου του συστήματος400
4. Το ηλιακό δυναμικό 401
5. Καθορισμός του συνολικού κυκλοφορίας απόδοσης του πλαίσιου ενός ΦΒ πεδίου403
6. Οι απώλειες των ηλεκτρικών συστημάτων της ΦΒ εγκατάστασης 405
7. Λογισμικό της ισχύος απόμενης του ΦΒ πεδίου που απαιτείται να αικανοποιεί υπολογισμός των καλωδίων408
8. Η επιλογή του φωτοβολταϊκού πλαίσιου ... 409
9. Ο καθορισμός του συνολικού (θεωρητικά) αριθμού πλαίσιων 409
10. Η τάση στην έξοδο του ΦΒ πεδίου .. 410
10.α. Προσδιορισμός της οικονομικής τάσης λειτουργίας του ΦΒ πεδίου, \[V_{OM,DC} \] 410
10.β. Επιλογή του ρυθμιστή φόρτισης των συσσωρευτών. 411
11. Συνδέσμος πλαίσιων 412
11.α. Αριθμός των συνδεόμενων πλαίσιων σε σειρά ανά συστοιχία 412
11.β. Αριθμός παράλληλων συστοιχιών στο ΦΒ πεδίο 412
12. Υπολογισμός του συστήματος των συσσωρευτών του ΑΦΣ 414
13. Υπολογισμός ηλεκτρονικών διατάξεων: (α) Ρυθμιστή φόρτισης 421
13. Υπολογισμός ηλεκτρονικών διατάξεων: (β) Αναστροφέας τάσεως DC-AC 424
14. Η χειροδόθηση των πλαίσιων 427
15. Υπολογισμός των διατομών των καλωδίων 433

ΠΑΡΑΔΕΙΓΜΑ-2: Μελέτη υπολογισμού ενός αυτόνομου ΦΒ συστήματος μεγάλης ισχύος 441
1. Καθορισμός δεδομένων και κύριων χαρακτηριστικών του ΦΒ συστήματος 441
2. Εκτίμηση των ενεργειακών αναγκών που πρέπει να αικανοποιεί το σύστημα 441
3. Η περίοδος λειτουργίας του συστήματος και η βέλτιστη κλίση των συλλεκτών 442
4. Το ηλιακό δυναμικό 443
5. Καθορισμός του συνολικού κυκλοφορίας απόδοσης του ΦΒ πλαίσιον του πεδίου 443
6. Οι απώλειες των ηλεκτρικών συστημάτων της ΦΒ εγκατάστασης 443
7. Υπολογισμός της ισχύος απόμενης του ΦΒ πεδίου που απαιτείται να αικανοποιεί το σύστημα που προκειμένου να αικανοποιούνται οι απαιτήσεις του προβλήματος 443
8. Η επιλογή του φωτοβολταϊκού πλαίσιου. 445
9. Καθορισμός του συνολικού αριθμού πλαίσιων (θεωρητικά) 445
10. Προσδιορισμός οικονομικής τάσης λειτουργίας ΦΒ πεδίου, \[V_{OM,DC} \] 445
10.α. Προσδιορισμός της οικονομικής τάσης λειτουργίας του ΦΒ πεδίου, \[V_{OM,DC} \] 445
11. Συνδέσμος πλαίσιων 446
11.α. Αριθμός των συνδεόμενων πλαίσιων σε σειρά ανά συστοιχία 446
11.β. Αριθμός παράλληλων συστοιχιών στο ΦΒ πεδίο 446
12. Υπολογισμός του συστήματος των συσσωρευτών του ΑΦΣ 448
13. Υπολογισμός ηλεκτρονικών διατάξεων: (α) Ρυθμιστή φόρτισης 452
13. Υπολογισμός ηλεκτρονικών διατάξεων: (β) Αναστροφέας τάσεως DC-AC 452
14. Η χειροδόθηση των πλαίσιων 457
15. Υπολογισμός των καλωδίων των καλωδίων 460

ΠΑΡΑΔΕΙΓΜΑ-3: Εναλλακτική μέθοδος υπολογισμού ΦΒ συστήματος.
Προσέγγιση βασισμένη στην ενέργεια των συσσωρευτών 462
Σύνθεση μεταξύ των δύο υπολογιστικών μεθόδων 471
Τα ηλιακά δεδομένα 472
μονοκρυσταλλικά φωτοβολταϊκά στοιχεία υψηλής απόδοσης

κεφάλαιο 14

αρχές σχεδιασμού των φωτοβολταϊκών στοιχείων

παράμετροι που σχετίζονται με το σχεδιασμό των φωτοβολταϊκών στοιχείων

στόχοι για το σχεδιασμό των φωτοβολταϊκών στοιχείων υψηλής απόδοσης

Συνήθεις μεγιστοποίησης της απόδοσης

μονοκρυσταλλικά φωτοβολταϊκά στοιχεία πυριτίου

ιδιότητες του πυριτίου

το βασικό φωτοβολταϊκό στοιχείο πυριτίου

κατασκευή του φβ στοιχείου

πρακτικές βελτιστοποίησης των φωτοβολταϊκών στοιχείων πυριτίου

α. Απλά φωτοβολταϊκά στοιχεία

β. φωτοβολταϊκά στοιχεία με παθητικοποίηση του εκπομπού (PESC)

γ. φωτοβολταϊκά στοιχεία με σημειακές ομικές επαφές μόνο στην οπίσθια όψη

δ. Κύτταρο PERL

σύνοψη απωλειών στα φωτοβολταϊκά στοιχεία πυριτίου

μονοκρυσταλλικές φωτοβολταϊκές διατάξεις III - V

ημιαγωγοί III - V

ιδιότητες του GaAs

επανασύνδεση

σχεδιασμός του ηλιακού κυττάρου GaAs

φωτοβολταϊκά στοιχεία III - V, τύπου-tandem, για εξαιρετικά υψηλές αποδόσεις

βιβλιογραφία

ΠΙΝΑΚΕΣ ΓΕΝΙΚΟΥ ΕΝΔΙΑΦΕΡΟΝΤΟΣ

Ευρετήριο

Παράρτημα φωτογραφιών
Πρόλογος

Είναι γεγονός αναμφισβήτητο ότι οι πρώτες ύλες και τα ενεργειακά αποθέματα του πλανήτη πρέπει να αντλούνται με μέτρο και σύνεση, προκειμένου να μη λείψουν από τις επερχόμενες γενεές. Σήμερα, οι ανάγκες για κατανάλωση της ηλεκτρικής ενέργειας αυξάνονται με ταχύτατους ρυθμούς σε όλα τα τεχνολογικά αναπτυσσόμενα κέντρα. Πολλές από τις ακολουθούμενες διαδικασίες παραγωγής ενέργειας (συμβατικές/πυρηνική τεχνολογία) συνδέονται με περιβαλλοντικές επιπτώσεις, οι οποίες μπορούν να επιδράσουν είτε σε τοπική, είτε σε καθολική κλίμακα. Με δεδομένη την ανησυχία, αλλά και το γενικό ενδιαφέρον των πολιτών σχετικά με τη διατήρηση της ποιότητας του περιβάλλοντος, οι ανανεώσιμες πηγές ενέργειας (ΑΠΕ) μπορούν να αποτελέσουν την ενδεχόμενη διέξοδο στα προβλήματα παραγωγής ηλεκτρικής ενέργειας.

Στις ανανεώσιμες πηγές εντάσσεται και η φωτοβολταϊκή μετατροπή. Η τεχνική της δημιουργίας ηλεκτρικής ενέργειας από την απορρόφηση του φωτός σε υλικά με ηλεκτρο-στατικά φράγματα δυναμικού (φωτοβολταϊκό φαινόμενο) δεν είναι κάτι καινούργιο. Σε βιομηχανική κλίμακα εφαρμόστηκε στην αρχή της δεκαετίας του 1960, προκειμένου να καλύψει τις ανάγκες τροφοδοσίας των διαστημικών εφαρμογών των ΗΠΑ (πρόγραμμα Apollo). Ακολούθησε η αυτόνομη τροφοδοσία σε σταθμούς/αποστολές των απομονωμένων περιοχών του πλανήτη (Αρκτική-Ανταρκτική) και, ακολουθώς, η εφαρμογή της φωτοβολταϊκής τεχνολογίας επεκτάθηκε σταδιακά καλύπτοντας μέρος των οικιακών ενεργειακών αναγκών των τεχνολογικά ανεπτυγμένων χωρών.

Η Αυστραλία, η οποία λόγω της προνομιακής της θέσης χαρακτηρίζεται από το μεγαλύτερο ηλιακό δυναμικό του πλανήτη, έχει να επιδείξει, εκτός από την εφαρμογή και τη χρήση των φωτοβολταϊκών εγκαταστάσεων, διακεκριμένα τεχνολογικά ερευνητικά κέντρα (UNSW) τα οποία προσφέρουν μοναδικά επιτεύγματα στην έρευνα, τη σχεδίαση, και την ανάπτυξη ΦΒ διατάξεων υψηλής απόδοσης. Με τον τρόπο αυτό, συνδυάζεται το φυσικό πλεονέκτημα της ύπαρξης αυξημένης ηλιακής ενέργειας, όχι μόνο με την αξιοποίηση της μέσω της φωτοβολταϊκής μετατροπής, αλλά και με την επιστημονική έρευνα και πρωτίστως την εκπαίδευση.

Στην Ευρώπη υπάρχει κοινοτική οδηγία για τη σταδιακή μείωση της παραγόμενης ηλεκτρικής ενέργειας από πυρηνικά εργοστάσια και αποθέματα ρυπογόνης καύσης (π.χ. λιγνιτικές μονάδες), και προβλέπεται η σταδιακή αντικατάσταση τους με ΑΠΕ. Δίνεται ιδιαίτερη έμφαση στην ολική ενέργεια και τη φωτοβολταϊκή μετατροπή. Στην Ευρωπαϊκή Ένωση το διαθέσιμο ηλιακό δυναμικό είναι δυσανάλογα κατανεμημένο, με αποτέλεσμα η πυκνότητα της ηλιακής ενέργειας για την Κύπρο, την Ελλάδα και την Ισπανία να είναι η υψηλότερη δυνατή. Στο σημερινό ενεργειακό πλαίσιο ανταγωνισμού του ευρωπαϊκού οικοδομήματος, οι τεχνολογικά και οικονομικά ανεπτυγμένα χώρα και οικονομικά ανεπτυγμένες χώρες του Βορρά μονοπωλούν την παραγωγή των φωτοβολταϊκών συστημάτων, τα οποία και εγκαθίσταντα στις υπερχρεωμένες χώρες του Νότου. Ομως, η διαδικασία αυτή δεν συνδυάζετα
με την ανάλογη ανάπτυξη των χωρών του Νότου στον αντίστοιχο τομέα της έρευνας και της παραγωγής. Για να αναπτυχθεί η τεχνολογία και να επιτευχθεί (εγγενής) ανάπτυξη στον ενεργειακό τομέα των ΑΠΕ, απαιτείται πάνω από όλα η ύπαρξη ερευνητικών δομών και υποδομών στα κέντρα της πανεπιστημιακής εκπαίδευσης.

Στη χώρα μας, το Νομοθετικό Πλαίσιο που εφαρμόσθηκε για την προσέλκυση επενδύσεων στον τομέα των φωτοβολταϊκών συστημάτων χαρακτηρίσθηκε από τις συχνές (κυρίως ως προς τη δανειοδότηση και την τιμολόγηση της kWh), και συνοδεύτηκε από χρονοβόρες γραφειοκρατικές διαδικασίες αδειοδότησης, με αποτέλεσμα την έλλειψη σταθερού ενδιαφέροντος και την αδυναμία προγραμματισμού από πλευράς επενδυτών. Επίσης, δεν υπήρξε κατάλληλος ελεγκτικός φορέας/μηχανισμός, θεματοφύλακας των περιβαλλοντικών θεμάτων: π.χ. ενδεικτικά αναφέρονται (1) προδιαγραφές (καλλιεργήσιμη γης η οποία δεν μπορεί για κανένα λόγο να δεσμευθεί, (2) επιτρεπόμενα είδη τεχνικού εξοπλισμού (listed) για τις οικιακές εγκαταστάσεις και τις βιομηχανικές εφαρμογές μεγάλης κλίμακας, και (3) ορθή διαχείριση μετά την ολοκλήρωση των πλαισίων, αφού πολλά από αυτά εμπεριέχουν στοιχεία τα οποία είναι τοξικά, και μελλοντικά θα απαγορεύεται η απόρριψή τους σε χωματερές, οπότε θα απαιτηθούν χημικές διεργασίες καταστροφής. Αυτό θα αποτελέσει μία επιπρόσθετη δαπάνη για την κάθε kWh που έχει ήδη παραχθεί, και θα επιφέρει την εκ των υστέρων ελάττωση της πραγματικής κερδοφορίας των επενδύσεων.

Η μεγιστοποίηση του κέρδους μιας επένδυσης ΑΠΕ δεν θα πρέπει να θεωρείται ότι είναι το μόνο ζητούμενο. Στην Ελλάδα η φωτοβολταϊκή μετατροπή για την παραγωγή ηλεκτρικής ενέργειας αντιμετωπίστηκε ‒κατά κάποιο τρόπο– ως «σύγχρονο El Dorado», το οποίο θα παρείχε μια γρήγορη και εξασφαλισμένη οικονομική απόδοση. Ακόμα και σήμερα, οι εγκαταστάσεις που τοποθετούνται σε κατοικημένες περιοχές ελέγχονται ελλιπώς ως προς θέματα τοπικού αρχιτεκτονικού σχεδιασμού και συγκεκριμένα: (1) ως προς την ένταξη στον τοπικό οικιστικό ιστό, αλλά και (2) ως προς την ενδεδειγμένη έκφραση από την ανάκλαση της ηλιακής ακτινοβολίας (albedo) σε ιδιοκτήτες/κατοίκους των παρακείμενων κατοικιών, είτε άμεσα οπτικά, είτε έμμεσα θερμοκρασιακά.

Όμως, για να επιτύχει η πραγματική αποστολή της προσπάθειας αξιοποίησης των ΑΠΕ, θα πρέπει να υπάρξουν σωστό νομοθετικό πλαίσιο, στιβαροί ελεγκτικοί μηχανισμοί, πραγματικό επενδυτικό ενδιαφέρον και σωστή εκπαίδευση (ακόμα και του υποψήφιου μικρο-επενδυτή!).

Στη Σχολή των Ηλεκτρολόγων Μηχανικών και Μηχανικών υπολογιστών του ΕΜΠ το μάθημα της Φωτοβολταϊκής Τεχνολογίας διδάσκεται για περισσότερο από 35 έτη με τον γράφοντα να έχει συμμετοχή σε όλη τη διαδρομή αυτή. Το παρόν σύγγραμμα απευθύνεται στους τελειοφοίτους φοιτητές της ΣΗΜΜυ, που παρακολουθούν το μάθημα του 9ου εξαμήνου «Φυσική, Τεχνολογία και Χρήσεις των Φωτοβολταϊκών», αλλά και σε όσους επιθυμούν να ενασχοληθούν με αυτήν την τεχνολογία, είτε από τεχνικής, είτε από επενδυτικής πλευράς.

Αφιερώνεται: πρωτίστως σε όλους τους φοιτητές μου στο Ε.Μ.Π., τους οποίους θεωρώ πνευματικά μου παιδά, αλλά και στη Δημόσια και Δωρεάν Παιδεία, η οποία με κόπους και αγώνες γενεών αποκτήθηκε, και σήμερα δοκιμάζεται σκληρά από την οικονομική κρίση στην οποία έχει περιέλθει η χώρα μας.

Αθήνα, Ιανουάριος 2013

Κωνσταντίνος Θ. Δέρβος
Καθηγητής Ε.Μ.Π.